Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro.
نویسندگان
چکیده
BACKGROUND The intracellular signaling pathways that control cardiomyocyte apoptosis have not been fully defined. Because insulin-like growth factor-1 (IGF-1) prevents cardiomyocyte apoptosis, we examined the role of its downstream signaling molecules in an in vitro model of hypoxia-induced cardiomyocyte apoptosis. METHODS AND RESULTS Treatment of rat neonatal cardiomyocytes with IGF-1 increased activity of both phosphatidylinositol 3' (PI 3)-kinase and its downstream target, Akt (also known as protein kinase B or PKB). Cardiomyocytes were subjected to hypoxia for 24 hours, and apoptosis was assessed by DNA laddering, TUNEL staining, and ELISA for histone-associated DNA fragments. IGF-1 treatment (100 nmol/L) reduced cardiomyocyte apoptosis, and this effect was inhibited by simultaneous treatment with a PI 3-kinase inhibitor. Cardiomyocytes were infected with either a control adenovirus (Ad.EGFP) or adenoviruses carrying constitutively active forms of PI 3-kinase (Ad.BD110) or Akt (Ad. myr-Akt-HA). Ad.BD110 significantly inhibited apoptosis of hypoxic cardiomyocytes compared with Ad.EGFP (61.0+/-4.6% less DNA fragmentation than in Ad.EGFP-infected cells, P<0.0001). Ad. myr-Akt-HA even more dramatically inhibited apoptosis of hypoxic cardiomyocytes (90.9+/-1.4% less DNA fragmentation than in controls, P<0.0001). CONCLUSIONS IGF-1 activates PI 3-kinase and Akt in cardiomyocytes. Activated PI 3-kinase and Akt are each sufficient to protect hypoxic cardiomyocytes against apoptosis in vitro. Adenoviral gene transfer provides a useful tool for investigating the role of these signaling pathways in cardiomyocyte apoptosis.
منابع مشابه
Canstatin inhibits hypoxia-induced apoptosis through activation of integrin/focal adhesion kinase/Akt signaling pathway in H9c2 cardiomyoblasts
A hypoxic stress which causes apoptosis of cardiomyocytes is the main problem in the ischemic heart disease. Canstatin, a non-collagenous fragment of type IV collagen α2 chain, is an endogenous anti-angiogenic factor. We have previously reported that canstatin has a cytoprotective effect on cardiomyoblasts. In the present study, we examined the effects of canstatin on hypoxia-induced apoptosis ...
متن کاملActivation of Notch-mediated protective signaling in the myocardium.
The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed follo...
متن کاملAkt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart.
BACKGROUND IGF-1 has been shown to protect myocardium against death in animal models of infarct and ischemia-reperfusion injury. In the present study, we investigated the role of the IGF-1-regulated protein kinase Akt in cardiac myocyte survival in vitro and in vivo. METHODS AND RESULTS IGF-1 promoted survival of cultured cardiomyocytes under conditions of serum deprivation in a dose-dependen...
متن کاملNegative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) and can induce cell death in neurons. By contrast, the activation of phosphatidylinositol 3-kinase and AKT/protein kinase B (PKB) acts to suppress neuronal apoptosis. Here, we report a functional interaction between MLK3 and AKT1/PKBalpha. Endogenous MLK3 and A...
متن کاملPsoralidin, an herbal molecule, inhibits phosphatidylinositol 3-kinase-mediated Akt signaling in androgen-independent prostate cancer cells.
The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 100 23 شماره
صفحات -
تاریخ انتشار 1999